ANISOTROPY OF THE MEAN FREE PATH LENGTH
IN STATIONARY GAS FLOWS

A, L. Stasenko UDC 533.601.1

Using the concept of the anisotropy of the mean free path length we study the transition
from continuous to rarefied flow for spherical and cylindrical gas sources for rigid and
Maxwellian molecules.

We know that when a jet flows into a vacuum (for example, [1-6]), the continuous medium gradually
becomes collisionless, while the temperature and the Mach number tend asymptotically to constant "frozen™
values. This conclusion is derived from both isotropic (spherically symmetric in the velocity space) [2, 5]
and ellipsoidal [3, 4] distribution functions, inthe latter case the anisotropy of the flow being described by two
temperatures: longitudinal Ty and transverse T .

In this paper the anisotropy of the flow is characterized by the fact that the molecules on average
traverse different parts of the mean free path in different directions. The concept of the anisotropy of the
mean free path length was used previously by Kogan [1] to investigate flow past a flat plate.

The most approximate assumption in this paper is that the distribution function (for the case of rigid
molecules) is locally Maxwellian and that the gas-dynamic parameters are the solution of the corresponding
Euler equation. But the resulting values of the radius of transition from a continuous medium to a rare-
fied medium of "frozen" temperature and Mach number are close to the values found by other methods
[3, 5, 6] for spherical and cylindrical sources. In addition, the discussion given below can be used for the
anisotropy characteristics and to determine the "boundaries" of the continuous flow for a jet of arbitrary
shape if we have found all the Maxwellian parameters for the jet.

We define the anisotropy of the mean free path length I of a test molecule using the equation
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where dy/c =dx/ ¢ is the differential of the flight time of the molecule in coordinate systems connected
respectively with the moving gas or with the source (Fig. 1) and og is averaged over the velocity space

of the field molecules and depends on the velocity ¢ of the test molecule. The latter can be chosen, for
example, equal to the mean velocity (c) at the point T of escape (the point of the "last" collision) or as
the velocity of any group of molecules. The anisotropy of the mean free path length introduced by Eq. (1)
is a function of the point r in the flow, the direction through that point, the flow parameters x, Kng in the
retarded gas, efc.), and the law of intermolecular interaction, since o ~ g‘4/ (s ~1) [7]. In particular,
for Maxwellian molecules (s =5), og is independent of the relative velocity for any distribution function
and it can be taken outside the integral sign in (1), for rigid molecules (s = »), ¢ = const and {(cg) = o{(g).
When n = const, ¢ = const, and {g) =V 2 (c) (@ homogeneous gas at rest), there follows from (1) the usual
expression for an isotropic mean free pathlj = (vV2on)-l,

By (1), the anisotropy of I becomes marked when the flow parameters in the integrand vary signifi-
cantly along the mean free path (a similar situation also occurs in a shock wave). In this sense the defini-
tion (1) of an anisotropic mean free path length is rather formal, but the formalism is justified by the
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clarity with which the pattern is visualized and the quali-
tatively true results, the validity of which is confirmed by
comparison with other theories.

Equation (1) defines I for any flow and any distribution
function. In what follows, for rigid molecules we take a
locally Maxwellian velocity distribution function f(r, ) = (b
/1r)3/2 exp [-h(E — V)?] and by way of examples, consider
spherical and cylindrical flows of inviscid nonheat-conducting
gas (rigid and Maxwellian molecules), the macroscopic
parameters of which, on the "sonic" surface of the sources
R =R, have critical values V =q,, T=T,, p=p,. Ata

Fig. 1. Computational scheme for cyl- sufficient distance from these sources (r > 1) the velocity of
indrical (0 = y < 7/2) and spherical the macroscopic motion is constant to order O(M™2) (hyper-
(x =7/2) sources. sonic approximation):
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Spherical Source (v =2), Maxwellian Molecules (s = 5). In this case for any distribution function,
using (2) and the geometrical relations following from Fig. 1 (for x = 7/2), the integral (1) can be evaluated
in terms of elementary functions and the mean free path can be expressed as
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It is easy to see that there is a set of points r () such that the test molecule does not experience any
further collisions when it leaves them in the direction § (as a result of its "penultimate® collision). Putting
!l = «in (3), we obtain the following transcendental equation for r,(6):

gZ! = sin@ tg 71 (Qu sin8) — cos 6, (4)
In particular, when § = 0 and § =7 we have
Qu(ert £ =1 (5)

Since we are considering a region of flow where r > 1, we have £, « 1, and the two radii r«(0)
and r.(r) defined by Eq. (5) differ by an amount O(€,,); the radius r- lies between them, obtained from the
same equation if in it we neglect unity by comparison with s;}. It is interesting to note that the latter is
also obtained from the I-c criterion of [5], based on an isotropic mean free path length 7; =2p/p(c). In
what follows it is useful to write r for both flows under consideration and an arbitrary power law relation
between the viscosity and the temperature p ~ T (w =1 for Maxwellian and v =1/2 for rigid molecules):
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Thus, for rp > r » 1, to order O ), wehaveQ =2 « 1, a =b = e-l, so that (3) can be simplified:

%41

+

7= 8 VM2 y—1 \T4

= P=] — .
=p r—7 (m‘) (”+1)

460



Fig. 2. Meridional sections of the I (r, 9)-surfaces normalized by I (r,
m): a) spherical source; Maxwellian molecules, Eq. (3); n =5/3, [
=1075%, rp =23,176; 1) r/r =0-0.9; I(r, m) = 120; 2) 0.99 and 1231,
respectively; 3) 0.999 and 6327; 4) 1.0 and 11,581; b) rigid molecules,
Eq. 8), rp =333; 1) r/rp =0.5; I(r, m) =1.23; 2) 0.6 and 2.07, re-
spectively; 3) 0.7 and 3.58; 4) 0.8 and 6.59; 5) 0.9 and 15.2.

From this we see that in the case of Maxwellian molecules far from the source the [~surfaces are nearly
spheres of radius increasing more rapidly than for an isofropic mean free path [; ~ r3~™, When r is close
to rp, the I-surfaces are strongly elongated in the directionof the flow and, finally, whenr =rq(0) = rp,
the l-radius corresponding to § = 0 becomes infinitely large (Fig. 2a).

Rigid Molecules (s = «). In this case (og); = o(g). To simplify, we assume further that the field
molecules do not have thermal velocities, c¢; =0 (more exact calculation shows that this assumption in-
troduces a comparatively small error; in general it does not affect the position of the boundary of the con-
tinuous medium). Then (g), = g;, where
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and (1) can be expressed in terms of the elliptic integral of the second kind E(S, q):
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The limits of integration o" and o correspond to the conditions y = 0 and y =/; in particular cos o' =b/a,
sind? = @ + e 1)V (@ —b)/2a. Putting I(r, 6) = = (o = Gl =E(0], q) = 0), from (8) we find an equation for the
lines ro(8):
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In particular, when § = 0 and 9 =7, from this we obtain an equation similar to (5) defining the two
radii r«(0) and r. (r) which differ from each other and from rr (cf. (6) when v =2 and w =1/2) by an amount
O(2a). Near 0 =7/2, re(8) has a minimum equal, to order O(e?), to ry =11/ a2/,

Thus, we can take A =rp(l — 2-1/ ") as the scale in determining the width of the transition region.

Figure 2b gives the meridional sections of the [-surfaces (6), the radii-vectors of each for con-
venience being normalized by the corresponding value of I (r, 7) and drawn through the same center. In-
deed, as r increases, they strongly increase in dimension and elongate in the direction perpendicular to
the flow, due to the macroscopic dispersion of the molecules —Vi — V and the associated reduction in the
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Fig. 3. The temperature as
10 - a function of the radius ac-
\ 2 r,, /7.0 . cording to the proposed theory
.~ {ecurve 1) and according to the

1“4 ™ A solution of the model Boltzmann
"‘l“ f/°¢ | equation (curves 2 [3]) (spheri-
P | cal source, rigid molecules,
. INTR| w=5/3,1,=1.47-107%.
r \ 2.
w* L
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relative velocity g. Finally, when r = ry, they "split": one of the radii becomes infinitely large. But in
directions near to the direction of the streamline, collisions continue to occur and terminate whenr = rp.
When r > rp, the temperature and Mach number become constant and equal to the "frozen® values T and
Myr. In Fig. 3, Tr is compared with the solution of the Boltzmann equation obtained in [3]. But here we
use the "transition" radius ryp [3]. There is a comparison in [5] of M and the experimental results of [6].

We note that the radius at which the inertia forces become comparable with the viscosity forces is,
according to the estimate in [8], greater than r~ which justifies the above discussion using the macro-
scopic Euler equations.

Cylindrical Source (v =1). In this case, as distinct from the spherical, the [-surfaces are not bodies
of rotation and depend on the angle of incidence y of the plane containing Vand ¢, =1(r, 6, x) (Fig. 1).

Maxwellian Molecules (s = 5). Integrating (1), we obtain the following quadratic equation for I:

a [1+2b (_l._)+a2 (—l—>2]1/2 + a? (l—) 4+ b= (a-+ b)exp ( acl, ) . (10)
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Rigid Molecules (s = »). In this case we have the following equation for ! (when c; = 0):
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Using (10) and (11) we can show that I does not become infinite for any value of its arguments, i.e., as
distinct from the spherical case, the collisionless regime is impossible in the case of a cylindrical source
(@ similar conclusion was obtained in [2]). However there is a typical radius rp, defined also from the
I-¢ criterion [5], such that when 1l « r « rp, I is proportional to r and when r > ry it increases more
sharply (exponentially) with r. But whenr > rp, the Euler equations become meaningless since the effect
of viscosity appears [8] and the flow may become subsonic across the cylindrical shock wave [9, 10]. Using
(1) we can construct I-surfaces for r > rq if we know the solution of the macroscopic hydrodynamical
equations.

Thus, the theory of the anisotropic mean free path length yields richer information on the flow struc-
ture than the /~c criterion [5] (which defines only the "boundary" of the continuous medium) and in this
sense it is a useful development of the isotropic mean free path, while remaining still quite simple.

NOTATION
o, m are the collision cross section and mass of molecule;
E:__E; g = [ 1
— £ are the thermal, fotal, and relative velocities of molecule;
n,p, T, V, p are the numerical and mass densities, temperature, macroscopic velocity and viscosity of
the gas;
a is the speed of sound;

462



is the ratio of specific heats;

W
k is Boltzmann's constant.

b = m/2kT;

L is the mean free path;

R, ¢ are the coordinate system fixed to source;

Y, 6 are the coordinate system fixed in the moving gas;
r =R/R,;

y=Y/R,

I =L/R, =Kn isthe Knudsen number;

R, is the radius of source.

Subscripts

0, %1 denote respectively the retarded gas, the surface of the source, and the current point on the
trajectory of the test molecule;

s denotes the exponent of the power in the equation for the interaction forces as a function of the
distance between the molecules;

{) denotes the averaging over the velocity space;

M =V/a;

e =¢/V;

a® =b? + sin? § - sin? x;
b =cosfd +1/¢ (for a spherical source x =7/2).
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